资源类型

期刊论文 603

会议视频 10

年份

2023 48

2022 55

2021 48

2020 54

2019 43

2018 37

2017 46

2016 21

2015 22

2014 18

2013 34

2012 21

2011 23

2010 14

2009 21

2008 21

2007 20

2006 22

2005 10

2004 2

展开 ︾

关键词

新冠病毒肺炎 4

能源 4

仿真 3

CAN总线 2

动力响应 2

动力学 2

实时控制 2

实时服务 2

时间序列 2

需求响应 2

2 Mb/s高速信令 1

2035年 1

2D—3D配准 1

2型糖尿病 1

4D打印 1

5型腺病毒 1

N-糖组 1

ACP1000 1

ARMA模型 1

展开 ︾

检索范围:

排序: 展示方式:

Damage identification in connections of moment frames using time domain responses and an optimization

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 851-866 doi: 10.1007/s11709-021-0739-3

摘要: Damage is defined as changes to the material and/or geometric properties of a structural system, comprising changes to the boundary conditions and system connectivity, adversely affecting the system’s performance. Inspecting the elements of structures, particularly critical components, is vital to evaluate the structural lifespan and safety. In this study, an optimization-based method for joint damage identification of moment frames using the time-domain responses is introduced. The beam-to-column connection in a metallic moment frame structure is modeled by a zero-length rotational spring at both ends of the beam element. For each connection, an end-fixity factor is specified, which changes between 0 and 1. Then, the problem of joint damage identification is converted to a standard optimization problem. An objective function is defined using the nodal point accelerations extracted from the damaged structure and an analytical model of the structure in which the nodal accelerations are obtained using the Newmark procedure. The optimization problem is solved by an improved differential evolution algorithm (IDEA) for identifying the location and severity of the damage. To assess the capability of the proposed method, two numerical examples via different damage scenarios are considered. Then, a comparison between the proposed method and the existing damage identification method is provided. The outcomes reveal the high efficiency of the proposed method for finding the severity and location of joint damage considering noise effects.

关键词: damage identification     beam-to-column connection     time-domain response     optimization    

Time-domain and frequency-domain approaches to identification of bridge flutter derivatives

Zhengqing CHEN

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 173-179 doi: 10.1007/s11709-009-0034-1

摘要: Flutter derivatives are essential for flutter analysis of long-span bridges, and they are generally identified from the vibration testing data of a sectional model suspended in a wind tunnel. Making use of the forced vibration testing data of three sectional models, namely, a thin-plate model, a nearly streamlined model, and a bluff-body model, a comparative study was made to identify the flutter derivatives of each model by using a time-domain method and a frequency-domain method. It was shown that all the flutter derivatives of the thin-plate model identified with the frequency-domain method and time-domain method, respectively, agree very well. Moreover, some of the flutter derivatives of each of the other two models identified with the two methods deviate to some extent. More precisely, the frequency-domain method usually results in smooth curves of the flutter derivatives. The formulation of time-domain method makes the identification results of flutter derivatives relatively sensitive to the signal phase lag between vibration state vector and aerodynamic forces and also prone to be disturbed by noise and nonlinearity.

关键词: long-span bridges     wind-induced vibration     flutter derivatives     forced vibration test     time-domain method     frequency-domain method    

Terahertz time-domain spectroscopy of high-pressure flames

Jason BASSI, Mark STRINGER, Bob MILES, Yang ZHANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 123-133 doi: 10.1007/s11708-009-0033-x

摘要: Laser spectroscopy in the visible and near infrared is widely used as a diagnostic tool for combustion devices, but this approach is difficult at high pressures within a sooty flame itself. High soot concentrations render flames opaque to visible light, but they remain transparent to far-infrared or terahertz (THz) radiation. The first far-infrared absorption spectra, to the best of our knowledge, of sooty, non-premixed, ethylene high-pressure flames covering the region of 0.2-2.5 THz is presented. A specially designed high-pressure burner which is optically accessible to THz radiation has been built allowing flame transmission measurements up to pressures of 1.6 MPa. Calculations of the theoretical combustion species absorption spectra in the 0.2-3 THz range have shown that almost all the observable features arise from H O. A few OH (1.84 and 2.51 THz), CH (2.58 THz), and NH (1.77 and 2.95 THz) absorption lines are also observable in principle. A large number of H O absorption lines are observed in the ground vibrational in a laminar non-premixed, sooty flame (ethylene) at pressures up to 1.6 MPa.

关键词: terahertz time-domain spectroscopy     high-pressure flames     H2O absorption lines    

On subsurface box-shaped lined tunnel under incident SH-wave propagation

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 948-960 doi: 10.1007/s11709-021-0740-x

摘要: In this paper, a half-plane time-domain boundary element method is applied to obtain the seismic ground response, including a subsurface box-shaped lined tunnel deployed in a linear homogenous elastic medium exposed to obliquely incident SH-waves. Only the boundary around the tunnel is required to be discretized. To prepare an appropriate model by quadratic elements, a double-node procedure is used to receive dual boundary fields at corners as well as change the direction of the normal vector. After encoding the method in a previously confirmed computer program, a numerical study is carried out to sensitize some effective parameters, including frequency content and incident wave angle for obtaining a surface response. The depth and impedance ratio of the lining are assumed to be unvaried. The responses are illustrated in the time and frequency domains as two/three-dimensional graphs. The results showed that subsurface openings with sharp corners distorted the propagation path of the anti-plane waves to achieve the critical states on the ground surface. The present approach can be proposed to civil engineers for preparing simple underground box-shaped models with angular boundaries.

关键词: box-lined tunnel     half-plane BEM     surface response     SH-wave     time-domain    

A super-element approach for structural identification in time domain

LI Jie, ZHAO Xin

《机械工程前沿(英文)》 2006年 第1卷 第2期   页码 215-221 doi: 10.1007/s11465-006-0004-4

摘要: For most time-domain identification methods, a complete measurement for unique identification results is required for structural responses. However, the number of transducers is commonly far less than the number of structural degrees of freedom (DOFs) in practical applications, and thus make the time-domain identification methods rarely feasible for practical systems. A super-element approach is proposed in this study to identify the structural parameters of a large-scale structure in the time domain. The most interesting feature of the proposed super-element approach is its divide-and-conquer ability, which can be applied to identify large-scale structures using a relatively small number of transducers. The super-element model used for time domain identification is first discussed in this study. Then a parameterization procedure based on the sensitivities of response forces is introduced to establish the identification equations of super-elements. Some principles are suggested on effective decomposing of the whole structure into super-elements for identification purposes. Numerical simulations are conducted at the end of this study. The numerical results show that all structural parameters can be identified using a relatively small number of transducers, and the computational time can also be greatly shortened.

关键词: numerical     effective decomposing     parameterization procedure     divide-and-conquer ability     time-domain identification    

利用太赫兹时域光谱法和微腔器件检测样品:综述 Special Feature on Precision Measurement and Instr

Lin CHEN, Deng-gao LIAO, Xu-guang GUO, Jia-yu ZHAO, Yi-ming ZHU, Song-lin ZHUANG

《信息与电子工程前沿(英文)》 2019年 第20卷 第5期   页码 591-607 doi: 10.1631/FITEE.1800633

摘要: 简要回顾了上海理工大学在用于探测样品的太赫兹时域光谱系统和微腔器件领域的研究进展。首先,通过施加高电场研究了基于砷化镓m-i-n二极管的宽频太赫兹辐射源。然后,详细介绍了我们实验室产生的自由空间太赫兹时域光谱系统和光纤耦合太赫兹时域光谱系统及其在药物/癌症检测中的应用。为进一步提高信噪比和高灵敏度,我们引入3种通用微腔结构实现微量样品检测。本文总结了这些结构的特性、性能和潜在的传感应用。

关键词: 太赫兹时域光谱;微腔;金属孔阵列;波导腔;伪局域表面等离子体    

Topology optimization of piezoelectric bi-material actuators with velocity feedback control

Mariana MORETTI, Emílio C. N. SILVA

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 190-200 doi: 10.1007/s11465-019-0537-y

摘要: In recent years, the new technologies and discoveries on manufacturing materials have encouraged researchers to investigate the appearance of material properties that are not naturally available. Materials featuring a specific stiffness, or structures that combine non-structural and structural functions are applied in the aerospace, electronics and medical industry fields. Particularly, structures designed for dynamic actuation with reduced vibration response are the focus of this work. The bi-material and multifunctional concepts are considered for the design of a controlled piezoelectric actuator with vibration suppression by means of the topology optimization method (TOM). The bi-material piezoelectric actuator (BPEA) has its metallic host layer designed by the TOM, which defines the structural function, and the electric function is given by two piezo-ceramic layers that act as a sensor and an actuator coupled with a constant gain active velocity feedback control (AVFC). The AVFC, provided by the piezoelectric layers, affects the structural damping of the system through the velocity state variables readings in time domain. The dynamic equation analyzed throughout the optimization procedure is fully elaborated and implemented. The dynamic response for the rectangular four-noded FE analysis is obtained by the Newmark’s time-integration method, which is applied to the physical and the adjoint systems, given that the adjoint formulation is needed for the sensitivity analysis. A gradient-based optimization method is applied to minimize the displacement energy output measured at a predefined degree-of-freedom of the BPEA when a transient mechanical load is applied. Results are obtained for different control gain values to evaluate their influence on the final topology.

关键词: topology optimization method     bi-material piezoactuator     active velocity feedback control     time-domain transient analysis     host structure design     vibration suppression    

Analytical method of capsizing probability in the time domain for ships in the random beam seas

LIU Liqin, TANG Yougang, LI Hongxia

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 361-366 doi: 10.1007/s11709-007-0048-5

摘要: The methods for constructing safe basins of ships and predicting their survival probability in random waves were studied. The nonlinear differential equation of the rolling motion of ships in random beam seas was established considering nonlinear damping, nonlinear restoring moment, and random waves. The random rolling differential equation was solved in the time domain by applying the harmonic acceleration method and by synthetically considering the instantaneous state of ships and the narrowband wave energy spectrum. The numerical simulation of random capsizing course was brought forward, the safe basins were constructed for safe navigation, and the survival probabilities of ships were calculated. As an example, the safe basins on the rolling initial value plane were constructed for a 30.27-meter-long fishing vessel according to different initial conditions and random wave parameters. The survival probabilities of the fishing vessel under different significant wave heights were predicted. Thus, the survival probabilities of ships in random seas can be predicted quantitatively by the proposed method.

关键词: different     survival probability     different significant     nonlinear differential     narrowband    

Improved numerical method for time domain dynamic structure-foundation interaction analysis based on

DU Jianguo, LIN Gao

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 336-342 doi: 10.1007/s11709-008-0054-2

摘要: Based on the reduced set of base function in scaled boundary finite element method (SBFEM), an improved time domain numerical approach for the dynamic structure-foundation interaction analysis was proposed. With reasonable choice of the number of base functions, the degrees of freedom on the structure-foundation interface were reduced and the associated computation for the calculation of convolution integral was greatly reduced. The results of this proposed approach applied to the calculation of a gravity dam and an arch dam. The acceleration frequency response functions were calculated and the influences affected by different reduced set of base functions as well as full set were compared. It was found that a higher degree of reduced set of base functions resulted in a significant increase of computational efficiency but a little bit of loss in accuracy. When the reduced set was decreased by 60%, the efficiency may be increased to up to five times, while the loss of accuracy of peak value of response will be less than 4%. It may be concluded that the proposed approach is suitable for large-scale structure-foundation interaction analysis.

关键词: structure-foundation interface     computational efficiency     different     suitable     numerical approach    

framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix and domain

《结构与土木工程前沿(英文)》 2023年 第17卷 第1期   页码 10-24 doi: 10.1007/s11709-022-0904-3

摘要: A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves. The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions. Then, the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system. The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground, layered ground, and pressure-dependent heterogeneous ground, as well as for an example of a soil–structure interaction simulation. Compared with the viscous and viscous-spring boundary methods adopted in previous studies, the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground. Numerical results show that SV-waves are more destructive to underground structures than P-waves, and the responses of underground structures are significantly affected by the incident angles.

关键词: underground structures     seismic response     stiffness matrix method     domain reduction method     P-SV waves    

Physics-Informed Deep Learning-Based Real-Time Structural Response Prediction Method

Ying Zhou,Shiqiao Meng,Yujie Lou,Qingzhao Kong,

《工程(英文)》 doi: 10.1016/j.eng.2023.08.011

摘要: High-precision and efficient structural response prediction is essential for intelligent disaster prevention and mitigation in building structures, including post-earthquake damage assessment, structural health monitoring, and seismic resilience assessment of buildings. To improve the accuracy and efficiency of structural response prediction, this study proposes a novel physics-informed deep-learning-based real-time structural response prediction method that can predict a large number of nodes in a structure through a data-driven training method and an autoregressive training strategy. The proposed method includes a Phy-Seisformer model that incorporates the physical information of the structure into the model, thereby enabling higher-precision predictions. Experiments were conducted on a four-story masonry structure, an eleven-story reinforced concrete irregular structure, and a twenty-one-story reinforced concrete frame structure to verify the accuracy and efficiency of the proposed method. In addition, the effectiveness of the structure in the Phy-Seisformer model was verified using an ablation study. Furthermore, by conducting a comparative experiment, the impact of the range of seismic wave amplitudes on the prediction accuracy was studied. The experimental results show that the method proposed in this paper can achieve very high accuracy and at least 5000 times faster calculation speed than finite element calculations for different types of building structures.

关键词: Structural seismic response prediction     Physics information informed     Real-time prediction     Earthquake engineering     Data-driven machine learning    

Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity

Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1323-0

摘要: Abstract • The calculation process and algorithm of response surface model (RSM) were enhanced. • The prediction errors of RSM in the margin and transition areas were greatly reduced. • The enhanced RSM was able to analyze O3-NOx-VOC sensitivity in real-time. • The O3 formations were mainly sensitive to VOC, for the two case study regions. Quantification of the nonlinearities between ambient ozone (O3) and the emissions of nitrogen oxides (NOx) and volatile organic compound (VOC) is a prerequisite for an effective O3 control strategy. An Enhanced polynomial functions Response Surface Model (Epf-RSM) with the capability to analyze O3-NOx-VOC sensitivities in real time was developed by integrating the hill-climbing adaptive method into the optimized Extended Response Surface Model (ERSM) system. The Epf-RSM could single out the best suited polynomial function for each grid cell to quantify the responses of O3 concentrations to precursor emission changes. Several comparisons between Epf-RSM and pf-ERSM (polynomial functions based ERSM) were performed using out-of-sample validation, together with comparisons of the spatial distribution and the Empirical Kinetic Modeling Approach diagrams. The comparison results showed that Epf-RSM effectively addressed the drawbacks of pf-ERSM with respect to over-fitting in the margin areas and high biases in the transition areas. The O3 concentrations predicted by Epf-RSM agreed well with Community Multi-scale Air Quality simulation results. The case study results in the Pearl River Delta and the north-western area of the Shandong province indicated that the O3 formations in the central areas of both the regions were more sensitive to anthropogenic VOC in January, April, and October, while more NOx-sensitive in July.

关键词: Response surface model     Hill-climbing algorithm     Ozone pollution     Precursor emissions     Control strategy    

基于钻头运动诱发套管头振动信号检测的井眼防碰监测方法

何保生,刘刚,王平双,文敏

《中国工程科学》 2011年 第13卷 第5期   页码 74-78

摘要:

针对海上加密调整井的井眼防碰问题,设计了一种井筒防碰地面监测预警系统,并进行了现场应用。系统利用加速度传感器监测通过套管传输到套管头上的钻头振动信号,利用数据采集、信号滤波放大和专门编制的监测软件记录分析传感器采集的振动信号,通过对信号的时域、频域分析,确定信号特征与井间相对距离的关系,识别钻头对风险井套管的趋近或碰撞。应用结果表明,该系统能有效感知通过地层、套管传输到套管头的钻头振动信号,并能识别出钻头对风险邻井的趋近,验证了系统在设计理论和方法上的可行性,为加密调整井的井眼防碰、保证钻井安全提供了一种有效的手段。

关键词: 调整井     防碰     风险井     振动信号     时域分析     频域分析    

Attuned design of demand response program and M-FACTS for relieving congestion in a restructured market

Y. HASHEMI,H. SHAYEGHI,B. HASHEMI

《能源前沿(英文)》 2015年 第9卷 第3期   页码 282-296 doi: 10.1007/s11708-015-0366-6

摘要: This paper addresses the attuned use of multi-converter flexible alternative current transmission systems (M-FACTS) devices and demand response (DR) to perform congestion management (CM) in the deregulated environment. The strong control capability of the M-FACTS offers a great potential in solving many of the problems facing electric utilities. Besides, DR is a novel procedure that can be an effective tool for reduction of congestion. A market clearing procedure is conducted based on maximizing social welfare (SW) and congestion as network constraint is paid by using concurrently the DR and M-FACTS. A multi-objective problem (MOP) based on the sum of the payments received by the generators for changing their output, the total payment received by DR participants to reduce their load and M-FACTS cost is systematized. For the solution of this problem a nonlinear time-varying evolution (NTVE) based multi-objective particle swarm optimization (MOPSO) style is formed. Fuzzy decision-making (FDM) and technique for order preference by similarity to ideal solution (TOPSIS) approaches are employed for finding the best compromise solution from the set of Pareto-solutions obtained through multi-objective particle swarm optimization-nonlinear time-varying evolution (MOPSO-NTVE). In a real power system, Azarbaijan regional power system of Iran, comparative analysis of the results obtained from the application of the DR & unified power flow controller (UPFC) and the DR & M-FACTS are presented.

关键词: multi-converter flexible alternative current transmission systems (M-FACTS)     demand response     fuzzy decision making     multi-objective particle swarm optimization-nonlinear time-varying evolution (MOPSO-NTVE)    

Entity and relation extraction with rule-guided dictionary as domain knowledge

《工程管理前沿(英文)》   页码 610-622 doi: 10.1007/s42524-022-0226-0

摘要: Entity and relation extraction is an indispensable part of domain knowledge graph construction, which can serve relevant knowledge needs in a specific domain, such as providing support for product research, sales, risk control, and domain hotspot analysis. The existing entity and relation extraction methods that depend on pretrained models have shown promising performance on open datasets. However, the performance of these methods degrades when they face domain-specific datasets. Entity extraction models treat characters as basic semantic units while ignoring known character dependency in specific domains. Relation extraction is based on the hypothesis that the relations hidden in sentences are unified, thereby neglecting that relations may be diverse in different entity tuples. To address the problems above, this paper first introduced prior knowledge composed of domain dictionaries to enhance characters’ dependence. Second, domain rules were built to eliminate noise in entity relations and promote potential entity relation extraction. Finally, experiments were designed to verify the effectiveness of our proposed methods. Experimental results on two domains, including laser industry and unmanned ship, showed the superiority of our methods. The F1 value on laser industry entity, unmanned ship entity, laser industry relation, and unmanned ship relation datasets is improved by +1%, +6%, +2%, and +1%, respectively. In addition, the extraction accuracy of entity relation triplet reaches 83% and 76% on laser industry entity pair and unmanned ship entity pair datasets, respectively.

关键词: entity extraction     relation extraction     prior knowledge     domain rule    

标题 作者 时间 类型 操作

Damage identification in connections of moment frames using time domain responses and an optimization

期刊论文

Time-domain and frequency-domain approaches to identification of bridge flutter derivatives

Zhengqing CHEN

期刊论文

Terahertz time-domain spectroscopy of high-pressure flames

Jason BASSI, Mark STRINGER, Bob MILES, Yang ZHANG

期刊论文

On subsurface box-shaped lined tunnel under incident SH-wave propagation

期刊论文

A super-element approach for structural identification in time domain

LI Jie, ZHAO Xin

期刊论文

利用太赫兹时域光谱法和微腔器件检测样品:综述

Lin CHEN, Deng-gao LIAO, Xu-guang GUO, Jia-yu ZHAO, Yi-ming ZHU, Song-lin ZHUANG

期刊论文

Topology optimization of piezoelectric bi-material actuators with velocity feedback control

Mariana MORETTI, Emílio C. N. SILVA

期刊论文

Analytical method of capsizing probability in the time domain for ships in the random beam seas

LIU Liqin, TANG Yougang, LI Hongxia

期刊论文

Improved numerical method for time domain dynamic structure-foundation interaction analysis based on

DU Jianguo, LIN Gao

期刊论文

framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix and domain

期刊论文

Physics-Informed Deep Learning-Based Real-Time Structural Response Prediction Method

Ying Zhou,Shiqiao Meng,Yujie Lou,Qingzhao Kong,

期刊论文

Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity

Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long

期刊论文

基于钻头运动诱发套管头振动信号检测的井眼防碰监测方法

何保生,刘刚,王平双,文敏

期刊论文

Attuned design of demand response program and M-FACTS for relieving congestion in a restructured market

Y. HASHEMI,H. SHAYEGHI,B. HASHEMI

期刊论文

Entity and relation extraction with rule-guided dictionary as domain knowledge

期刊论文